

La vision claire

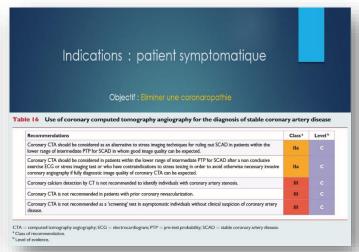
Scanner Coronaire: Indications et Résultats

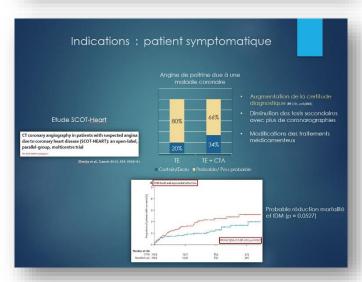
Anis SFAXI, Jossigny

Déclaration de conflits d'intérêts

Je n'ai pas trouvé de conflits d'intérêts concernant cette présentation.....et pas faute d'en avoir cherché!

Scanner coronaire: un voyage dans le temps...




Pal G & al. Metro-Goldwyn-Mayer-1960

Scanner coronaire : il était une fois en...2018

- Consensus d'experts 2008- 2010
- Recommandations timides: 2013 ESC Guidelines on the management of stable CAD: Classe IIa C
- Résultats des premières études randomisées PROMISE et SCOT-HEART(2015) avec un recul de 2 ans:
 - Précision du diagnostic ajustement thérapeutique préventif
 - A 2 ans : réduction <u>probable</u> des décès et IDM
- Les débuts de l'étude fonctionnelle des lésions

Scanner coronaire: Retour vers...2023!

Indications

Patient symptomatique

Non coronarien

connu

Coronarien Patient asymptomatique

Résultats

Analyse anatomique

Caractéristiques de la plaque Détection de la plaque vulnérable

Étude de la graisse péri coronaire

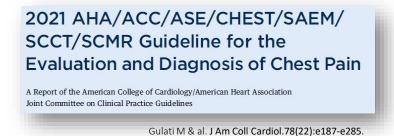
Analyse fonctionnelle

FFR-CT

Perfusion CT

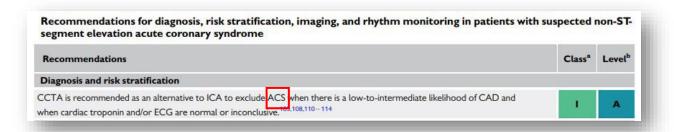
Zemeckis R & al. Universal Pictures - 1985

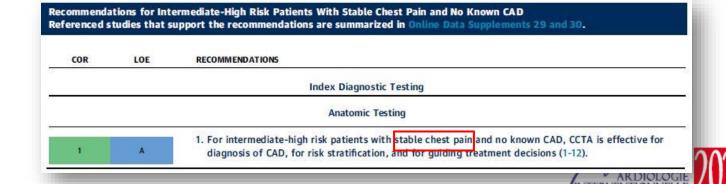
Scanner coronaire: Du vert dans les Guidelines


Test initial chez le patient symptomatique à risque intermédiaire

Knuuti J& al. European Heart Journal (2020) 41, 407 - 477

Collet JP & al. European Heart Journal (2021) 42, 1289 - 1367


Use of diagnostic imaging tests in the initial diagnostic management of symptomatic patients with suspected coronary artery disease


Recommendations

Class^a Level^b

Non-invasive functional imaging for myocardial ischaemia^c or coronary CTA is recommended as the initial test to diagnose

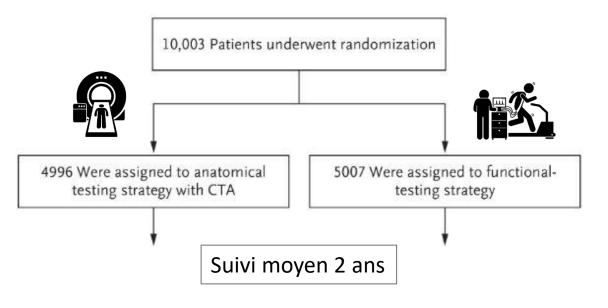
CAD in symptomatic patients in whom obstructive CAD cannot be excluded by clinical assessment alone. 4.5,555,73,78–80

Scanner coronaire : Revue de littérature

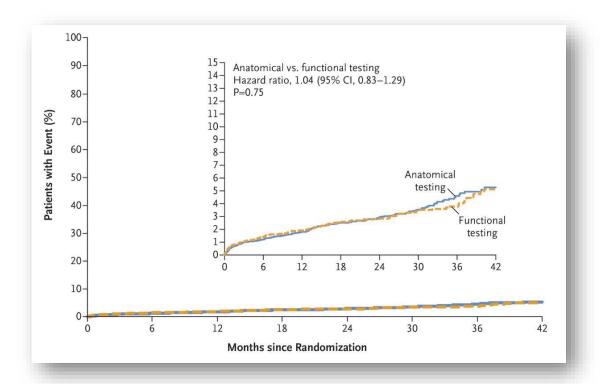
TABLE 2 Randomized Co	ntrolled Trials Evaluatin	ng the Utility of CTA			TABLE 2 Continued			
First Author/Study,	0 11-11-	4.000	er an in a		(OTA all			
Year (Ref. #) Min et al., 2012 (119)	Objective Utility of CTA in CCS	CTA vs functional imaging by	CT Method CTA by 64-detector row scanner	Study Population Stable suspected angina	N Patients 180 (91 vs 89)	Country United States	Primary Endpoint and Other Clinically Relevant Endpoints Near-term angina-specific health status	Results Both arms improved angina-specific health status
Min et al., 2012 (119)	Utility of CTA in CCS	CTA Vs functional imaging by	CTA by 64-detector row scanner	Stable suspected angina	190 (31 A2 93)	United States	Near-term angina-specific nearth status	Both arms improved angina-specific neath status
SCOT-HEART, 2015 (24,120)	Utility of CTA in CCS	CTA vs standard of care	CTA by 64- or 320-detector row scanner	Stable suspected angina	4,146 (2,073 vs 2,073)	United Kingdom	Certainty of diagnosis of angina caused by coronary heart disease at 6 weeks Death from coronary heart disease or nonfatal MI at 5 y	Reclassification of the diagnosis of angina caused by coronary heart disease 23% vs 1%; P < 0.0001 2.3% vs 3.9%; HR: 0.59 (0.41-0.84); P = 0.004
PROMISE, 2015 (49)	Utility of CTA in CCS	CTA vs functional test	CTA by ≥64-detector row scanner	Nonurgent suspected angina	10,003 (4,996 vs 5,007)	United States and	Death, nonfatal MI, hospitalization for unstable angina,	3.3% vs 3.0% (a median follow-up of 25 months);
CAPP, 2015 (121)	Utility of CTA in CCS	CTA vs exercise stress ECG	CTA by 64-detector row scanner	Stable suspected angina	500 (250 vs 250)	United Kingdom	The change of the SAQ score at 3 months	Difference of angina stability: -11.1 (-17.4 to -4.8: CTA better); P = 0.001; quality of life: -5.7 (-10.3 to -1.2: CTA better); P = 0.014
CRESCENT, 2016 (122)	Utility of CTA in CCS	Calcium score + CTA vs functional testing	Calcium score = 0 and pretest probability ≤70%: CTA not performed	Stable suspected angina	350 (242 vs 108)	Netherlands	Absence of chest pain complaints at 1 y	39% vs 25%; P = 0.012
Dewey et al., 2016 (20)	Utility of CTA in CCS	CTA vs ICA	CTA by 320-detector row scanner	Suspected coronary artery disease because of atypical chest pain	340 (168 vs 172)	Germany	Major procedural (CTA or ICA) complication occurring within 48 h Cardiac death, stroke, MI, unstable angina, or revascularization	0.6% vs 0.0%; $P = 1.00$ 4.2% vs 3.7% (a median follow-up of 3.3 y); $P = 0.86$
IAEA-SPECT/CTA, 2017 (123)	Utility of CTA in CCS	CTA vs functional testing by stress myocardial perfusion imaging	CTA by ≥64-detector row scanner	Symptomatic patients with an intermediate likelihood of CAD or asymptomatic patients at intermediate- high risk of coronary event.	303 (152 vs 151)	Brazil, Czech Republic, India, Mexico, Slovenia, Turkey	Additional noninvasive testing or ICA within 6 months	27.7% vs 16.8%; adjusted OR: 2.0 (1.1-3.6); P = 0.02
CAT-CAD, 2018 (124)	Utility of CTA in CCS	CTA vs ICA	CTA by dual-source scanner	Stable suspected angina	120 (60 vs 60)	Poland	Rate of ICA ICA not leading to revascularization	35% vs 98%; P < 0.001 8% vs 70%; P < 0.001
CONSERVE, 2019 (21)	Utility of CTA in CCS	CTA vs ICA	NA NA	Stable suspected angina	1,631 (823 vs 808)	North America, East Asia, Europe, India	Death, MI, unstable angina, stroke, urgent and/or emergent revascularization or cardiac hospitalization at 1 v	4.6% vs 4.6%; P = 0.99
CARE-CCTA, 2019 (125)	Utility of CTA in CCS	CTA vs myocardial perfusion SPECT	CTA by 64-detector row scanner	Stable suspected angina with 10%-90% pretest probability of CAD	903 (460 vs 443)	Korea	Total cost Death, ACS, cerebrovascular accident, revascularization, stent thrombosis, or significant bleeding at 1 y	\$4,514 vs \$5,208; P = 0.043 4.6% vs 5.4%; P = 0.455
RESCUE, 2020 (126)	Utility of CTA in CCS	CTA vs myocardial perfusion SPECT	CTA by ≥64-detector row scanner	Stable suspected angina	1,050 (518 vs 532)	United States, Germany, the Netherlands	Cardiac death, MI, or revascularization	HR: 1.03 (0.61-1.75); (median follow-up of 16.2 months): P = 0.19
IMAGE-HF 1C, 2020 (127)	Utility of CTA in heart failure	CTA vs ICA	CTA by ≥64-detector row scanner	Heart failure of unknown etiology	253 (124 vs 129)	Canada, Finland	Total cost at 12 months	C\$7,611 vs C\$8,482; P = 0.310
Goldstein et al., 2007 (128)	Utility of CTA in ACS	CTA vs standard of care	CTA by 64-detector row scanner	Suspected ACS at low risk	197 (99 vs 98)	United States	Test complications Time from randomization until completion of testing interpretation	0.0% vs 0.0%; P = NA 3.4 h vs 15.0 h; P < 0.001
Chang et al., 2008 (129)	Utility of CTA in ACS	CTA vs standard of care	CTA by 64-detector row scanner	Low-to-high risk for ACS	266 (133 vs 133)	Korea	Admission Death, MI, or target vessel revascularization at 1 month	41% vs 50%; P = 0.14 0.0% vs 0.8%; P = NA
Miller et al., 2011 (130)	Utility of CTA in ACS	CTA vs standard of care	CTA by 64-detector row scanner	Suspected ACS without cardiac enzyme elevation	60 (30 vs 30)	United States	Total cost at 90 days	\$10,134 vs \$16,579; P = 0.144
CT-STAT, 2011 (131)	Utility of CTA in ACS	CTA vs myocardial perfusion SPECT	CTA by 64- or 320-detector row scanner	Suspected ACS at low-to- intermediate risk	699 (361 vs 338)	United States	Time from randomization to when test results were called to emergency department physicians	2.9 h vs 6.3 h; P < 0.001
ROMICAT-II, 2012 (132)	Utility of CTA in ACS	CTA vs standard of care	CTA by ≥64-detector row scanner	Suspected ACS	1,000 (501 vs 499)	United States	Length of stay in the hospital	23.2 h vs 30.8 h; P < 0.001
ACRIN PA 4005, 2012 (133)	Utility of CTA in ACS	CTA vs standard of care	CTA by ≥64-detector row scanner	Suspected ACS at low-to- intermediate risk	1,370 (908 vs 462)	United States	Cardiac death or MI within 30 days in patients with a negative CTA examination Death or MI at 30 days	0.0% (0/640) 1.10% vs 1.08%; difference 0.02% (-5.6% to 5.7%)
CATCH, 2013 (134,135)	Utility of CTA in ACS	CTA vs standard of care	CTA by 320-detector row scanner	Suspected ACS	600 (299 vs 301)	Denmark	Cardiac death, MI, hospitalization for unstable angina, late symptom-driven revascularization, or readmission for chest pain	11% vs 16% (a median follow-up of 18.7 months); $P=0.04$
CT-COMPARE, 2014 (136)	Utility of CTA in ACS	CTA vs exercise stress ECG	CTA by 64- or 128-detector row scanner	Low-to-intermediate risk for ACS	562 (322 vs 240)	Australia	Diagnostic performance for ACS Hospital cost at 30 days	AUC 0.97 vs 0.87; P = 0.22 A\$2,193 vs A\$2,704; P < 0.001
Levsky et al., 2015 (137)	Utility of CTA in ACS	CTA vs myocardial perfusion SPECT	CTA by 64-detector row scanner	Suspected ACS	400 (200 vs 200)	United States	ICA not leading to revascularization within 1 y	7.5% vs 10%; P = 0.44
BEACON, 2016 (138)	Utility of CTA in ACS	CTA vs standard of care	CTA by ≥64-detector row scanner	Suspected ACS	500 (250 vs 250)	The Netherlands	The number of patients requiring revascularization within 30 days	9% vs 7%; P = 0.40
Levsky et al., 2018 (139)	Utility of CTA in ACS	CTA vs stress echocardiography	CTA by 64-detector row scanner	Low-to-intermediate risk for ACS	400 (201 vs 199)	United States	Hospitalization rate Median emergency department length of stay for discharged patients Median hospital length of stay	19% vs 11%; P = 0.026 5.4 h vs 4.7 h; P < 0.001 58 h vs 34 h; P = 0.002
CARMENTA, 2019 (95)	Utility of CTA in NSTEMI	Routine clinical care vs CMR first vs CTA first	CTA by second-generation dual-source scanner	Suspected NSTEMI	207 (69 vs 68 vs 70)	The Netherlands	Proportion of patients referred to ICA during initial hospitalization	100% vs 66% (P = 0.001 vs routine care) vs 87% (P < 0.001 vs routine care)

CCTA vs FT

CCTA vs ICA


Scanner coronaire : Débuts prometteurs!

PROMISE


Outcomes of Anatomical versus Functional Testing for Coronary Artery Disease

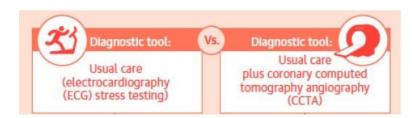
Pamela S. Douglas, M.D., Udo Hoffmann, M.D., M.P.H., Manesh R. Patel, M.D., Daniel B. Mark, M.D., M.P.H., Hussein R. Al-Khalidi, Ph.D., Brendan Cavanaugh, M.D., Jason Cole, M.D., Rowena J. Dolor, M.D., Christopher B. Fordyce, M.D., Megan Huang, Ph.D., Muhammad Akram Khan, M.D., Andrzej S. Kosinski, Ph.D., Mitchell W. Krucoff, M.D., Vinay Malhotra, M.D., Michael H. Picard, M.D., James E. Udelson, M.D., Eric J. Velazquez, M.D., Eric Yow, M.S., Lawton S. Cooper, M.D., M.P.H., and Kerry L. Lee, Ph.D., for the PROMISE Investigators*

N Engl J Med 2015; 372:1291-1300

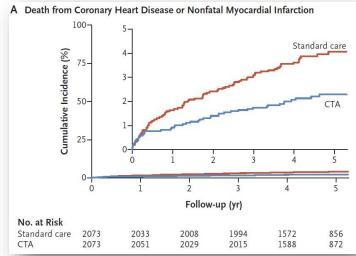
CP composite : Décès IDM Angor

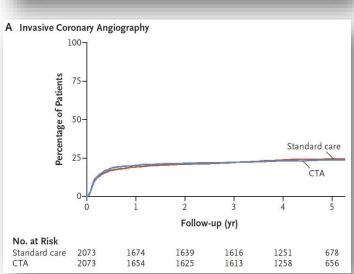
Scanner coronaire: sauve des vies!

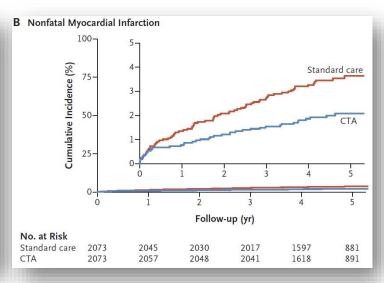
SCOT-HEART

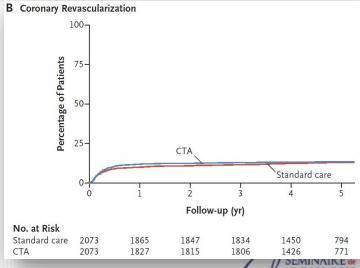

ORIGINAL ARTICLE

Coronary CT Angiography and 5-Year Risk of Myocardial Infarction

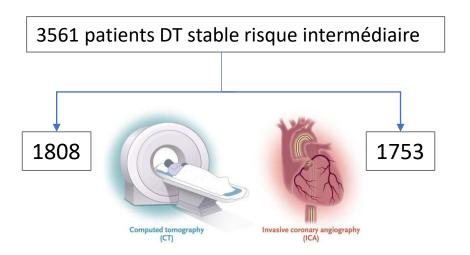

The SCOT-HEART Investigators*


N Engl J Med 2018;379:924-33


4146 patients

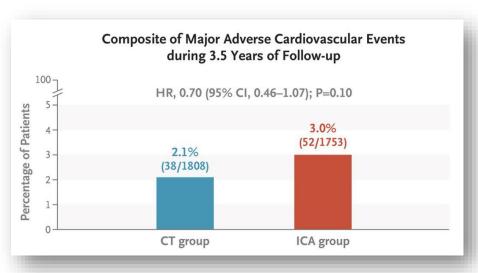


suivi 5 ans


Scanner coronaire :et la coro?

DISCHARGE

CT or Invasive Coronary Angiography in Stable Chest Pain


The DISCHARGE Trial Group


N Engl J Med 2022;386:1591-602.

Suivi 3,5 ans

CP composite : MACE Décès CV - IDM - AVC

Scanner coronaire: Analyse anatomique

Excellente valeur prédictive négative

Study/First Author (Ref. #)	Year	N Patients	Sensitivity	Specificity	PPV	NPV	Accuracy
ACCURACY (8)	2008	230	95	83	64	99	NA
Meijboom et al. (9)	2008	360	99	64	86	97	88
NIMISCAAD (10)	2009	327	94	88	91	91	91
CORE-64 (11)	2012	273	91	87	90	88	NA
EVINCI (12)	2015	475	91	92	83	96	91
Budoff et al. (13)	2017	77	85	90	81	92	NA
PICTURE (14)	2017	230	92	78	82	90	NA
VERDICT (15)	2020	1,023	97	72	91	88	89
Andreini et al. (17): Patients with atrial fibrillation	2017	83	95	98	95	98	96
Andreini et al. (18): patients with heart rate ≥80 beats/min	2018	40	100	82	100	82	90

Scanner coronaire: Analyse anatomique

CAD-RADS™ 2.0 - 2022 Coronary Artery Disease-Reporting and Data System

An Expert Consensus Document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Cardiology (ACC), the American College of Radiology (ACR), and the North America Society of Cardiovascular Imaging (NASCI)

J Am Coll Cardiol Img 2022;15:1974–2001

Caractéristiques de la plaque

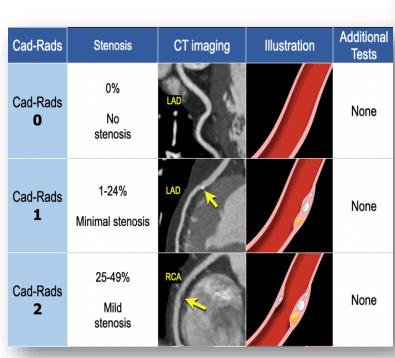
Recommandations de CAT

Degré de sténose (Cad-Rads 0-5)

Longueur

Topographie

Charge calcique (P1-4)

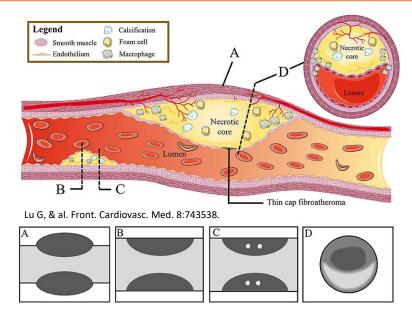

Pontage (G)

Stent (S)

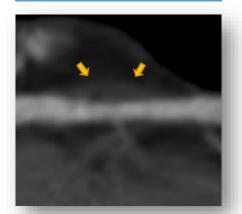
Non analysable (N)

Critères fonctionnels (I)

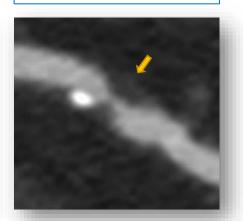
Critères de vulnérabilité (HPR)



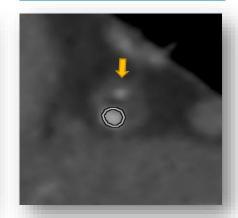
Cad-Rads 3	50-70% Moderate stenosis	LCX	Consider functional assessment
Cad-Rads 4	A: 70-99% stenosis in 1 or 2 vessels B: >50% stenosis in the left main or >70% stenosis in 3-vessels	LAD	A: Consider functional assessment or ICA B: ICA is recommended
Cad-Rads 5	100% total occlusion	RCA	ICA and/or viability assessment
Cad-Rads N	Non-diagnostic study	RCA ←	Additional evaluation



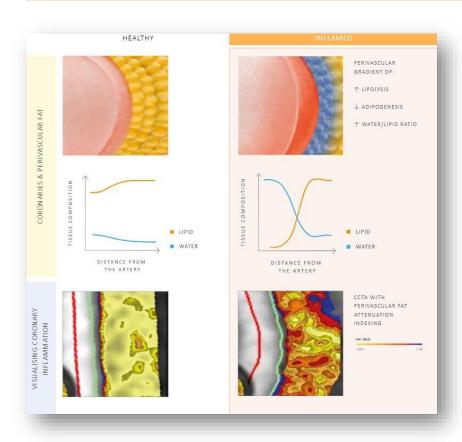
Scanner coronaire : Plaque à Haut Risque (HRP)


Plaque vulnérable

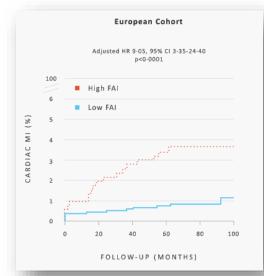
Remodelage positif > 10%

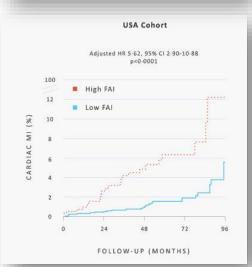

Hypodensité <30UH

Spotty calcifications < 3 mm



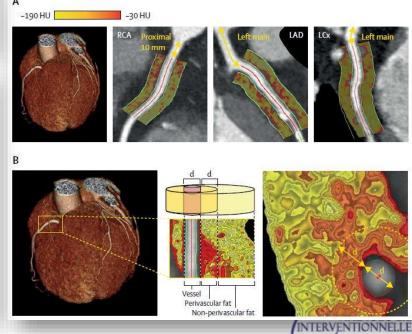
Napkin - Ring sign





Scanner coronaire: FAI marqueur d'inflammation

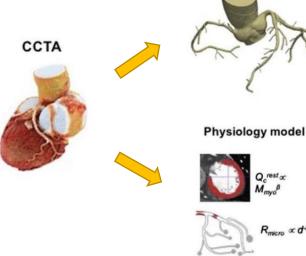
Fat Attenuation Index (FAI)



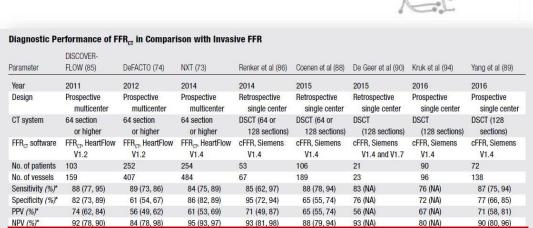
Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of prospective outcome data

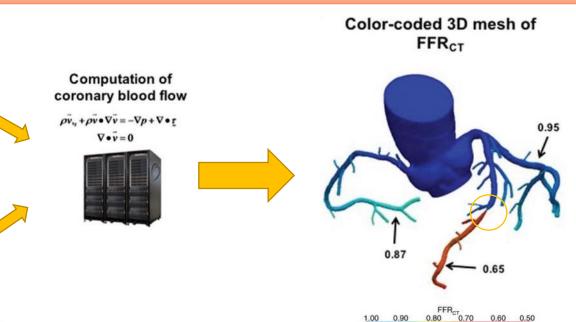
Oikonomou & al. Lancet 2018; 392: 929-39

4000 patients Suivi 10 ans



Scanner coronaire : la dynamique des fluides


FFR-CT

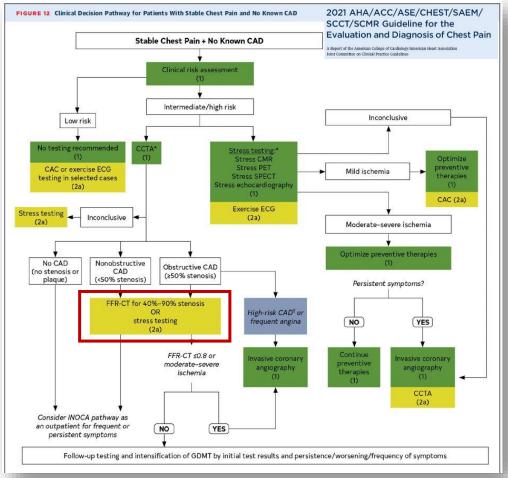

Anatomic 3D model

0.83 (0.7, 0.90)

Note.—PPV = positive predictive value, NPV = negative predictive value, DSCT = dual-source CT, NA = not available.

0.79 (0.72, 0.87) 0.93 (0.91, 0.95) 0.92 (NA)

Précision diagnostique 80-94% comparée à la FFR invasive



^{*} Data presented on a per-vessel level with 95% confidence interval in parentheses.

Scanner coronaire: FFR-CT Super Star!

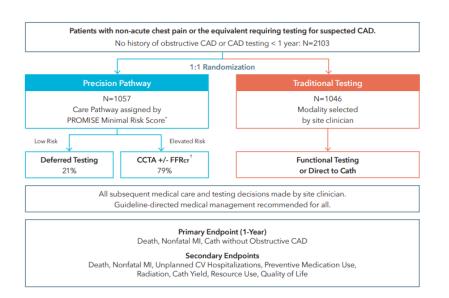
étude	année	Nb	référence
NXT	2014	254	J Am Coll Cardiol 2014;63:1145–55
PLATFORM	2016	584	J Am Coll Cardiol 2016;68:435–45
SYNTAX III REVOLUTION	2019	223	Circulation: Cardiovascular Interventions. 2019;12:e007607
ADVANCE Registry	2020	5083	J Am Coll Cardiol Img 2020;13:97–105
FORECAST	2021	1400	European Heart Journal (2021) 42, 3844–3852
PRECISE	2022	2013	AHA 2022
TARGET	2023	1216	ACC 2023

Equivalence dans les MACE Réduction du nombre de coronarographies « blanches » Réduction du coût / prise en charge invasive

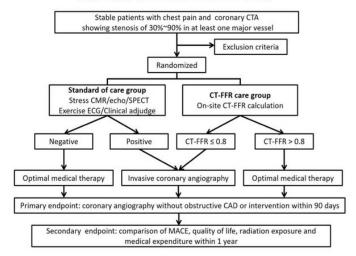
Gulati M & al. J Am Coll Cardiol.78(22):e187-e285.

Scanner coronaire: La guerre (froide) des FFR-CT

PRECISE AHA 2022



TARGET ACC 2023



1-Year Results	Precision Pathway (N=1057)	Traditional Testing (N=1046)	
Primary Endpoint Composite [§]	4.2% (44)	11.3% (118)	
All-Cause Death	0.5% (5)	0.7% (7)	
Nonfatal MI	1.2% (13)	0.5% (5)	
ICA w/o Obstructive CAD	2.6% (27)	10.2% (107)	
Death or MI	1.7% (18)	1.1% (12)	

The flow chart of TARGET trial

CP: réduction des Coro sans lésion obstructive (« coronarographies blanches »)

CS: aucune différence concernant les MACE

Scanner coronaire: La perfusion myocardique

Acquisition repos / stress

Statique ou dynamique

Validée par des études randomisées

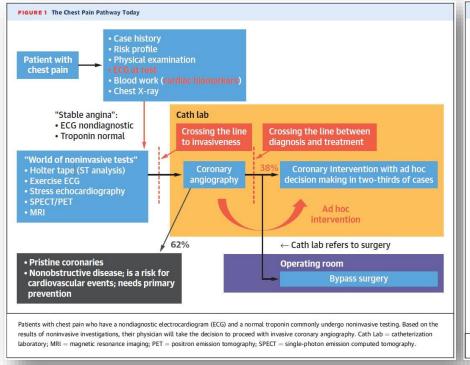
PACIFIC Nous, F.M.A et al J Am Coll Cardiol Img. 2022;15(1):75-87

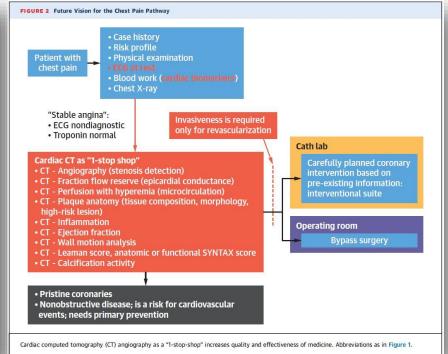
CATCH 2 Sorgaard MH, et al. JACC Img 2018;11:1611-21

PERFECTION Pontone G, et al. J Am Coll Cardiol Img 2019;12:1487-97

How to Acquire? How to Evaluate? Strengths Limitations Acquisition of a single Visual assessment of CT Simple acquisition Highly dependent on the phase during the first-pass perfusion images with narrow (as coronary CTA) contrast bolus timing →peak of the contrast agent at window width and level attenuation the time of peak (200-350 W and 150-200 L, Short breathhold May be missed because only myocardial attenuation respectively) one sample of data was Simple analysis as only acquired reformatted images Breath, high heart rate Static CTP needed artifacts, and beam hardening artifacts could be Provides integrated misinterpreted as perfusion anatomic and functional defect evaluation in a single Qualitative evaluation of examination myocardial perfusion Myocardial hypoperfusion Feasible also in may go undetected in case of revascularized patients balanced ischemia **During intravenous contrast** Dedicated post-processing Regular breaths with wide Longer breathhold with medium injection, repeated software needed to obtain shuttle mode acquisition coverage scanner myocardial blood flow rapid CT scans (20-25) are Quantitative assessment Higher radiation dose acquired for the detection of quantification from TAC of myocardial perfusion contrast wash-in and wash-**Dynamic CTP** Need dedicated and blood flow out phases through the post-processing software myocardium allowing the Less beam hardening determination of time- Longer acquisition time in artifacts attenuation curves (TAC) comparison to static Useful in multivessel Lack of MBF cut-off involvement Feasible also in

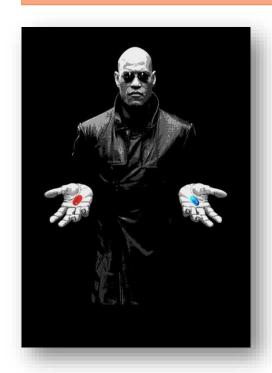
revascularized patients


Comprehensive evaluation of coronary circulation


J Am Coll Cardiol. 2021 Nov, 78 (20) 1950-1953

Scanner coronaire: L'outil parfait!

Le concept du « 1-stop Shop »



Eastwood C. & al. & al. Warner Bros 1993

Scanner coronaire : Bienvenue dans le monde réel!

Pas de FFR-CT en France

Monopole de la technique par un leader mondial Business Model : service

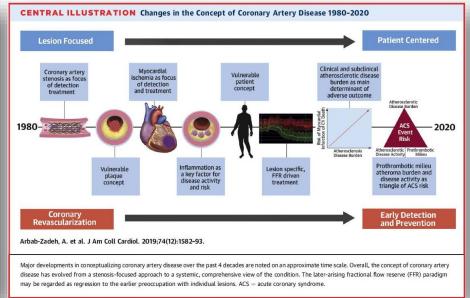
Non remboursé (1500\$)

Pas de CT-Perfusion en routine

Examen Irradiant, long, coûteux (vs IRM)

Pas de marqueurs d'inflammation en routine logiciels coûteux

Wachowski's & al. Warner Bros - 1999

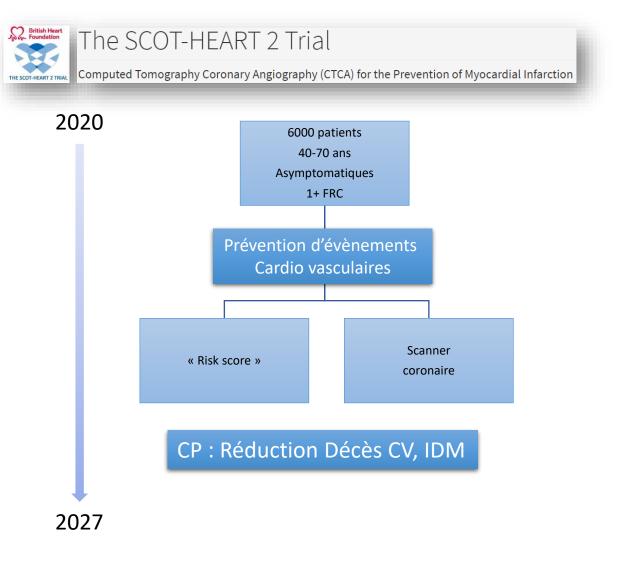


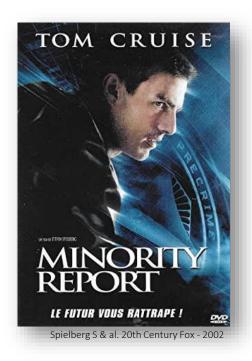
Scanner coronaire: Retour vers...2028?

Concept du « 1-Stop Shop »

Pyramid of Coronary Artery Disease (CAD) Functional assessment CT perfusion CABG CABG and PCI Functional (f) - 1VD Nonostructive Coronary Artery NOCA Disease (FFR > 0.80) No Coronary Artery Disease Rule out CAD Role of MSCT Financional (f) - 1VD Nonostructive Coronary Artery NOCA Disease (FFR > 0.80) No Coronary Artery Disease Rule out CAD Role of MSCT Decision making between CABG and PCI Financional (f) - 1VD Nonostructive Coronary Artery NOCA Disease (FFR > 0.80) No Coronary Artery Disease Rule out CAD Serruys, P.W. et al. J Am Coll Cardiol. 2021;78(7):713-736.

Changement de paradigme




Zemeckis R & al. Universal Pictures - 1989

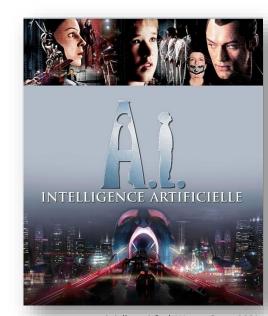
Détection précoce = dépistage?

Scanner coronaire: mieux vaut prévenir...

Scanner coronaire : le futur

FFR-CT pour tous

French Startup logo?



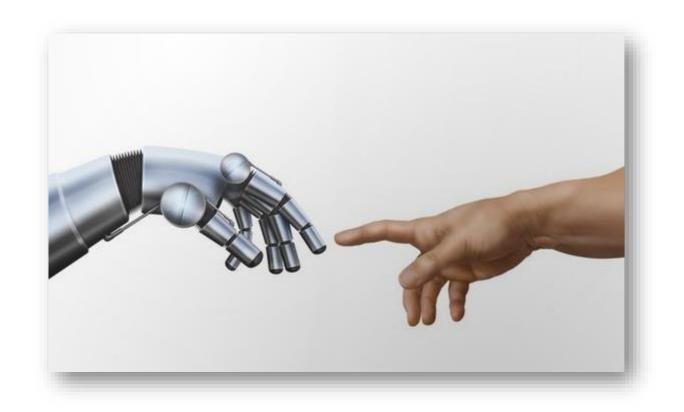
scanner à comptage photonique

Spielberg S & al. Warner Bros - 2001

Intelligence artificielle – Deep Learning

Scanner coronaire : messages « à emporter »

Aujourd'hui


- Le scanner coronaire : outil indispensable dans la prise en charge de la maladie coronaire chez le patient symptomatique :
 - Éliminer la coronaropathie
 - Détecter la plaque à haut risque pour une meilleure prévention
 - Évaluer le caractère fonctionnel des plaques non obstructives
 - Meilleure orientation des patients vers la prise en charge invasive

Demain

- Concept du « 1-Stop Shop »
- Le dépistage chez le patient asymptomatique

Merci de votre attention

